A Deep Fourier Residual method for solving PDEs using Neural Networks
نویسندگان
چکیده
When using Neural Networks as trial functions to numerically solve PDEs, a key choice be made is the loss function minimised, which should ideally correspond norm of error. In multiple problems, this error coincides with – or equivalent H−1-norm residual; however, it often difficult accurately compute it. This work assumes rectangular domains and proposes use Discrete Sine/Cosine Transform efficiently H−1 norm. The resulting Deep Fourier-based Residual (DFR) method approximate solutions PDEs. particularly useful when lack H2 regularity methods involving strong formulations PDE fail. We observe that H1-error highly correlated discretised during training, permits accurate estimation via loss.
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Cystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملDeep Residual Learning and PDEs on Manifold
In this paper, we formulate the deep residual network (ResNet) as a control problem of transport equation. In ResNet, the transport equation is solved along the characteristics. Based on this observation, deep neural network is closely related to the control problem of PDEs on manifold. We propose several models based on transport equation, Hamilton-Jacobi equation and Fokker-Planck equation. T...
متن کاملSolving ill-posed inverse problems using iterative deep neural networks
We propose a partially learned approach for the solution of ill posed inverse problems with not necessarily linear forward operators. The method builds on ideas from classical regularization theory and recent advances in deep learning to perform learning while making use of prior information about the inverse problem encoded in the forward operator, noise model and a regularizing functional. Th...
متن کاملUsing spectral method as an approximation for solving hyperbolic PDEs
We demonstrate an application of the spectral method as a numerical approximation for solving Hyperbolic PDEs. In this method a finite basis is used for approximating the solutions. In particular, we demonstrate a set of such solutions for cases which would be otherwise almost impossible to solve by the more routine methods such as the Finite Difference Method. Eigenvalue problems are included ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Methods in Applied Mechanics and Engineering
سال: 2023
ISSN: ['0045-7825', '1879-2138']
DOI: https://doi.org/10.1016/j.cma.2022.115850